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Efficient Analysis of Microstrip Lines Including Edge
Singularities in Spatial Domains

Jong-Sung Kim, Student Member, IEEE,and Wee Sang Park, Member, IEEE

Abstract—Microstrip lines are analyzed by considering edge-
singular behavior using closed-form Green’s functions in a spa-
tial domain. A Maxwell function which incorporates the appro-
priate edge conditions of the line is introduced for the derivations
of a transverse correlation function. From calculations of excess
lengths of an open-end discontinuity, the results of the proposed
method using the edge conditions are in better agreement with the
quasistatic results than those of transverse uniform current varia-
tions for conductor strips with relatively wider width.

Index Terms—Edge singularity, microstrip lines, transverse cor-
relation function.

I. INTRODUCTION

NUMERICAL analyzes of microstrip structures have many
applications in designs of microwave integrated circuits.

In particular, full-wave methods include the effects of surface
wave, radiation loss, and coupling loss. In general, the most rig-
orous approaches characterizing the microstrip structures are to
solve the system matrix based on either the electric field integral
equation (EFIE) in the spectral domain or the mixed potential
integral equation (MPIE) in the spatial domain. The full-wave
methods involve time-consuming Sommerfeld integrals associ-
ated with highly oscillating and slowly decaying kernels. The
MPIE provides relatively less singular kernels compared with
the EFIE. In regions showing rapid variations in their current
densities, however, a process of finely dividing such regions
will improve the reliability of the numerical results of the MPIE.
The increases in subsectional basis functions to model fine fea-
tures of the current densities implies a large matrix dimension,
leading to a longer computation time. Small cells along the
edges of the microstrip transmission lines have been taken to
consider the edge singularity of the line, with large width in the
spatial domain, in order to add numerical accuracy, maintaining
the number of basis function as little as possible [1].

In this letter, in order to consider edge singularities without
using more basis functions along the transverse direction of
microstrip lines in the spatial domain, a transverse correlation
function is analytically derived using several mathematical
properties of the Maxwell function with a singularity of order
of one half and its Fourier conjugate. A convergence study
based on the choices of the basis and testing functions in for-
mulating the MoM matrix in [2] noted that basis functions with

Manuscript received November 30, 2000; revised March 12, 2001. The review
of this letter was arranged by Associate Editor Dr. Ruediger Vahldieck.

The authors are with the Department of Electrical and Computer Engineering,
Microwave Application Research Center, Pohang University of Science and
Technology, Pohang, Kyungpook, Korea.

Publisher Item Identifier S 1531-1309(01)05546-5.

singularities of the order of less than one are admissible in the
orthogonal direction of the current. A microstrip open-ended
discontinuity will be investigated and compared with other
results in order to validate the proposed method.

II. DERIVATION OF THE TRANSVERSECORRELATION FUNCTION

The formulations will be considered for microstrip lines with
width on a grounded dielectric substrate, for example, an
open-end discontinuity shown in Fig. 1. A standard application
of a Galerkins procedure for the MPIE in the spatial domain
yields the general form of impedance matrix elements given by

(1)
where implies the inner product, and and denote
basis and testing functions, respectively. The spatial domain
Green’s functions and can be determined with the
help of the Sommerfeld identity after obtaining the coefficients
and exponents by the two-level applications of the generalized
pencil of functions (GPOF) method [3]. The basis function of
(1), , is a rooftop function with a transverse dependence
of , which represents the real behavior of the
current near the edge of the conducting strips.

if and

otherwise
(2)

where is the half span of the rooftop function. The quadruple
integrals in the impedance matrix elements are reduced to the
double integrals of multiplication of Green’s function and the
correlation function after the changing of variables.

(3)

with

where and mean the separation distance between the source
and observation points for theand coordinates, respectively.
The scalar potential part will be skipped here because it is sim-
ilar to the vector part. The correlation function can be
separated into longitudinal and transverse components for the
structure assumed.

(4)
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becomes a polynomial function with the order of 3 for
the rooftop function. On the other hand, cannot be di-
rectly determined for the transverse variations considered. We
try to find its analytic form using the property that the correla-
tion of two functions in the spatial domain is equivalent to the
multiplication of their conjugate pairs in the spectral domain.

(5)

The Fourier transform of is , where
denotes a Bessel function of the zeroth-order. With the relation
of [4, Eq. 6.672.6], (5) can be written as the Legendre function
of the second kind

(6)

The Legendre function is given by the elliptic integral
of the first kind with the relation of [5, Eq. 8.13.10], as shown
below;

(7)

Now, the other form of is

(8)

Instead of using the series form of the elliptic integral, it is more
useful to take an approximation form of [4, Eq. 8.113.3] with a
logarithmic function included. With satisfactorily approxi-
mated as three terms shown in the appendix of [6], it becomes

(9)

It has an integrable logarithmic singularity at . It can
be circumvented by means of a QDAGS routine in the IMSL
package. The QDAGS is a general-purpose integrator appro-
priate for a function which may have endpoint singularities.

III. N UMERICAL RESULTS

In order to verify our derivations outlined in the previous
section, we treated a microstrip open-end discontinuity in
Fig. 1. The current of the strip of the open-end discontinity
can be expanded by a combination of semi-infinite microstrip
current and rooftop subdomain current, which are described in
detail in [7] and [8]. The transverse correlation function of (9)
was applied in evaluating impedance elements between
rooftop basis functions. Matrix elements by the semi-infinite
current can be found by a linear summation of impedance
elements between rooftop functions weighted by the
sinusoidal values at sampling points of testing procedures. The
open-end on a grounded dielectric slab we investigated has a
width mm, and a substrate thickness mm
with a relative permittivity . In Fig. 2, the magnitude
and phase of the reflection coefficient by the proposed method
are plotted with the quasistatic results using frequency-inde-

Fig. 1. Geometry of microstrip open-end discontinuity.

Fig. 2. Magnitude and phase of reflection coefficient for the open-end
discontinuity (line: circuit model, marker: the proposed method).

Fig. 3. Excess length versus the width of strip (d = 0:635mm,f = 20GHz)
(line: circuit model,�: edge cell,�: uniform cell).

pendent circuit models of [9], which was previously established
to be in reasonably good agreement with experimental data
and the results of other full-wave analyses [8]. A satisfactory
agreement can be found within reasonable error bounds.
Further, the open-end discontinuity is often modeled as having
a reflection coefficient with a magnitude of less than unity due
to radiation loss and a phase delay which can be explained by
the length extension .

(10)

In Fig. 3, the excess length with respect to ratios of
at GHz are plotted with the results of a usual uniform
transverse cell for comparison. It is shown that the values of both
cases give good agreement with quasistatic approximations of
[9] for narrow widths with less than two substrate width and
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then uniform case shift away as the ratio becomes higher.
Note that the edge cell gives improved results compared to the
uniform cell for wider lines. At higher ratios, i.e., those with
very small characteristic impedances, the discrepancy increases
in both cases. The higher the ratio, the greater the discrepancy.
Clearly, it can be known that the capacity of the edge cell to
survive the increase in strip width is greater than that of the
uniform cell. For improved results, it is important to choose the
basis function after an examination of the strip widths. Also, the

current components should be additionally taken into account
for wider strips.

IV. CONCLUSION

We developed a new, efficient, full-wave approach which con-
siders the edge-singular behavior of microstrip lines in a spa-
tial domain. A transverse correlation function was derived to
include the edge behavior of microstrip lines with the help of
tables of integrals. This was successfully verified through the
analysis of a microstrip open-end discontinuity. From the cal-
culations of the excess length of the microstrip open-end dis-
continuity, it was observed that the edge cell can survive the
wider increase of the strip width, unlike the uniform cell. The
method can be used in analyzes of strip structures such as strip

resonators, gap discontinuities, microstrip feed lines, and strip
antennas.
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